

 HOME
 DOWNLOAD
 JSREPORT ONLINE
 PLAYGROUND
 BLOG
 LEARN
 BUY
 ABOUT

 Chrome pdf recipe

 table of contents
Basics

Options

Configuration

Fonts

Page breaks

Printing triggers

Native headers and footers

Complex headers and footers

CSS Media type and Bootstrap

ARIA

Images increasing pdf size

Inline script data

Printing existing web pages

Chrome process allocation

Debugging

Troubleshooting

Basics

Chrome-pdf recipe is using headless chrome to print html content into pdf files.

Options

The settings reflects the headless chrome API where you can also find detail information.

	scale
	displayHeaderFooter
	headerTemplate
	footerTemplate
	printBackground
	pageRanges
	format
	width
	height
	marginTop
	marginRight
	marginBottom
	marginLeft
	mediaType
	viewportWidth
	viewportHeight
	waitForJS
	waitForNetworkIdle

These basic settings are typically stored with the template, but you can also send them through API calls inside the template.chrome property.

The options can be also dynamically set from within the page javascript using:

<script>
 ...
 window.JSREPORT_CHROME_PDF_OPTIONS = {
 landscape: true
 }
</script>

Configuration

Use chrome-pdf node in the standard config file.

"extensions": {
 "chrome-pdf": {
 "timeout": 30000,
 "launchOptions": {...}
 }
}

to find more information about what is available in launchOptions configuration object you can check the docs here.

you can also use top level chrome property in configuration, the difference is that this configuration will be shared with any other extension that uses chrome and the configuration snippet above is specifically for options in chrome-pdf extension.

"chrome": {
 "timeout": 30000
}

Fonts

The fonts can be easily embedded into PDF reports using the assets extension. You can find the tutorial on how to do it here.

Page breaks

CSS contains styles like page-break-before that you can use to specify html page breaks. This can be used as well with chrome-pdf in order to specify page breaks inside pdf files.

<h1>Hello from Page 1</h1>
<div style='page-break-before: always;'></div>
<h1>Hello from Page 2</h1>

You can also use css property page-break-inside to for example avoid breaking an element to multiple pages.

Printing triggers

You may need to postpone pdf printing until some javascript async tasks are processed. If this is your case set the chrome.waitForJS=true in the API or Wait for printing trigger in the studio menu. Then the printing won't start until you set window.JSREPORT_READY_TO_START=true inside your template's javascript.

...
<script>
 // do some calculations or something async
 setTimeout(function() {
 window.JSREPORT_READY_TO_START = true; //this will start the pdf printing
 }, 500);
 ...
</script>

See an example of using printing triggers when rendering charts here.

Native headers and footers

The header and footer are evaluated as if they were a full jsreport template. This means you can add, for example, a child template reference into a header and it will be extracted. You can also use main template helpers or data in the header/footer. Remember that in order to show the header/footer you need to activate the displayHeaderFooter option first and add some top, bottom margin to the template in order to give the page some space to show the header/footer.

Inside the header/footer template you can use some special css classes to make chrome inject some content for you. the special css classes supported by chrome are the following:

	date -> injects formatted print date
	title -> injects the content of the document title
	url -> injects the document location
	pageNumber -> injects current page number
	totalPages -> insject the total pages

There are some issues with native header/footer you should be aware of:

	images cannot be referenced link, you need to use base64 data URI
	javascript is not evaluated
	content has scaling issue and need to set font size css to make it big enough to be visible
	background color is not printed, use -webkit-print-color-adjust: exact as workaround

In the most of the cases it is better to use pdf-utils instead which is less limiting and without these issues.

The chrome by default displays the current date in the header and file name in the footer when displayHeaderFooterSelected. You can place an empty tag to the header or footer to avoid this behavior.

The header/footer has some extra padding you can remove using:

<style>#header, #footer { padding: 0 !important; }</style>

Example showing how to use the special css classes and the workaround for the scaling issues.

<!--header template content-->
<html>
 <head>
 <style>
 /* defining explicit font-size solves the scaling issue */
 html, body {
 font-size: 12px;
 }
 </style>
 </head>
 <body>
 <!--
 defining some elements with the special css classes makes chrome
 inject content in runtime
 -->
 Page of
 </body>
</html>

Complex headers and footers

The pdf-utils extension provides advanced and more rich features to merge dynamic content into the chrome pdf output, like rich header/footer, print page numbers, watermarks, merge pages with different orientation, etc. make sure to check the docs for some examples.

CSS Media type and Bootstrap

Chrome by default uses print CSS media query when printing pdf. This impacts CSS frameworks like Bootstrap which usually produces different results for print media type. The pdf in this case applies different styles then html. You can adapt/unite this by changing media type settings from print to screen in the template's chrome settings.

ARIA

Chrome by default adds special tags to the pdf to make it more accessible to people with disabilities. This is typically good but can cause performance problems in very long pdfs. The rendering time can be affected as well as the final pdf size. In this case, you can try to disable the pdf tagging by adding aria-hidden="true" attribute to the HTML body or wrapping element.

You can simply double check if the output pdf is ARIA tagged if you open it in an text editor and find text /StructTreeRoot

Images increasing pdf size

The images printed to the pdf keep the original size despite the width and height attributes set. Visually the images are properly sized, but the original size is the same and can dramatically increase the pdf output. The solution is to resize the images to the desired size before starting the chrome pdf printing. One of the approaches using templating engines helper is mentioned here.

Also the css style object-fit: cover may cause pdf size increase and you may need to avoid it.

Inline script data

The request data or template definition can be reached inside inline script tag using function await window.jsreport.getRequest()

recipe:
<script>
 (async () => {
 const req = await window.jsreport.getRequest()
 document.getElementById('recipe').innerText = req.template.recipe
 })()
</script>

To improve performance you can also select just specific data you need.

some prop:
<script>
 (async () => {
 const someProp = await window.jsreport.getRequest('data.someProp')
 document.getElementById('someProp').innerText = someProp
 })()
</script>

Another option is to serailize data into the html during the templating engine evaluation using toJS system helper.

<script>
 const reportData = {{{toJS this}}}
 ...
</script>

Printing existing web pages

You can also print an existing webpage through chrome-pdf recipe without a need to define your templates in jsreport studio. Just send a request like this:

{
 "template": {
 "recipe": "chrome-pdf",
 "engine": "none",
 "chrome": {
 "url": "https://jsreport.net"
 }
 }
}

Or you can create an empty template and define the url using jsreport script.

function beforeRender(req, res) {
 req.template.chrome = {
 "url": "https://jsreport.net"
 }
}

Chrome process allocation

The recipe by default allocates a single instance of chrome per worker thread and reuses it. This means that for the configuration "workers": { "numberOfWorkers": 5 } there will be 5 chrome instances allocated.

This is reasonable for most of the cases, but in case your report is initiating many nested reports, you may want to increase the parallelization by increasing the number of chrome instances allocated per thread.

{
 "chrome": {
 "numberOfWorkers": 3
 }
}

Or you can change the allocation strategy and let the recipe always create a new instance of chrome. This increases the parallelization of the nested reports to the maximum.
However, note that starting a new chrome process costs about 100ms.

{
 "chrome": {
 "strategy": "dedicated-process"
 }
}

Debugging

In many cases, you can switch to the html recipe and debug the output using the F12 browser's tool just like any other page.

To troubleshoot the javascript evaluated in the chrome-pdf recipe, you can write to the console.log and inspect the outputs in the studio profile tab when clicking on the chrome-pdf operation.

For a full chrome-pdf debugging experience, find the video tutorial here. Full credits go to the author.

Note the same debugging techniques applies also to the chrome-image recipe.

Troubleshooting

Protocol error (Page.printToPDF): Printing failed can becaused by various things, but the most common solution is

	increase provided memory and cpu
	disable accessibility
	make sure your images have proper size

self closing divs (<div />) are heavily slowing down chrome pdf rendering, don't use them

some users experienced freezing chrome because of wrong indentation of source html, this may sounds strange but it can help to click code reformat

chrome may do page breaks badly if you use images, it helps if you explicitly set image height in the wrapped div

<div style='height:500'>

</div>

tables with long content expand across multiple pages as needed, and if you have table headers/footer those will be replicated in each page which the table's content is present. however the headers/footers replicated in each page don't leave any kind of space by default, this result in having weird layout issues in which header content overlaps rows in other pages. The solution for this is to add the needed space (represented as padding) in an empty header/footer cell to properly separate the content that is split across pages. Example for this solution available here

tables also have issues with the borders when content is large, the solution for this is to not use border-collapse: collapse which does not work properly when content is split across pages. So different approach should be done in order to replicate borders that work properly across pages. Example for this solution available here

putting multiples tables in a single document can generate layout issues when converted to pdf, so it is best that instead of creating new <table> in a loop, we create new <tbody> elements. Example for this solution available here

google fonts may have letter spacing issues, the solution is to add the following style

<style>
 * {
 text-rendering: geometricprecision !important;
 }
</style>

 chrome/puppeteer doesn't run by default in limited environment like docker and it usually asks to pass --no-sandbox argument. This can be achieved using the following config. See also puppeteer troubleshooting.

 "extensions": {
 "chrome-pdf": {
 "launchOptions": {
 "args": ["--no-sandbox"]
 }
 }
}

 Questions? Ask in forum

 Need support?

 Edit this article

 © 2023 jsreport® All rights reserved.

 jsreport version

 latest
2.11.0

